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Scalar Advection-Diffusion Equation

Lc = −κ∆c︸ ︷︷ ︸
diffusion

+ a · ∇c︸ ︷︷ ︸
advection

= f

2D advection velocity vector:
a = (a1, a2)T = |a|(cosφ, sinφ)T .

φ = advection direction.

κ = diffusivity.

Describes many transport phenomena in fluid mechanics:
Heat transfer.
Semi-conductor device modeling.
Usual scalar model for the more challenging Navier-Stokes
equations.

Global Péclet number (L = length scale associated with Ω):

Pe =
rate of advection
rate of diffusion

=
L|a|
κ

= Re ·
{

Pr (thermal diffusion)
Sc (mass diffusion)
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Advection-Dominated Regime

Typical applications: flow is
advection dominated.

Figure 1: Galerkin Q1 solution
(color) vs. exact solution (black)
(Pe = 150)

Some classical remedies:

Stabilized FEMs (SUPG, GLS,
USFEM): add weighted residual
(numerical diffusion) to
variational equation.
RFB, VMS, PUM: construct
conforming spaces that
incorporate knowledge of
local behavior of solution.
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The Discontinuous Enrichment Method (DEM)

First developed by Farhat et. al. in 2000 for the Helmholtz equation [1].

Idea of DEM:

“Enrich” the usual Galerkin polynomial field VP by the free-space solutions to
the governing homogeneous PDE Lc = 0.

ch = cP + cE ∈ VP ⊕ (VE\VP)

where
VE = span{c : Lc = 0}

Simple 1D Example:{
ux − uxx = 1 + x , x ∈ (0, 1)
u(0) = 0, u(1) = 1

Enrichments: uE
x − uE

xx = 0⇒ uE = C1 + C2ex ⇒
VE = span{1, ex}.
Galerkin FEM polynomials: VP

Ωe=(xj ,xj+1) = span
{

xj+1−x
h ,

x−xj
h

}
.
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Two Variants of DEM

Two variants of DEM: “pure DGM” vs. “true DEM”

DGM DEM

Vh VE VP ⊕ (VE\VP)

ch cE cP + cE

Enrichment-Only “Pure DGM”:
The standard continuous Galerkin

polynomial field is dropped
entirely from the approximation.

True or “Full” DEM:
Splitting of the approximation
into coarse (polynomial) and

fine (enrichment) scales.

Unlike PUM, VMS & RFB: enrichment field in DEM is not required to
vanish at element boundaries

⇒ DEM is discontinuous by
construction!

DEM = DGM with Lagrange Multipliers

5 / 26



Advection-Diffusion Equation Discontinuous Enrichment Method (DEM) DEM for the 2D Advection-Diffusion Equation Numerical Experiments Summary

Two Variants of DEM

Two variants of DEM: “pure DGM” vs. “true DEM”

DGM DEM

Vh VE VP ⊕ (VE\VP)

ch cE cP + cE

Enrichment-Only “Pure DGM”:
The standard continuous Galerkin

polynomial field is dropped
entirely from the approximation.

True or “Full” DEM:
Splitting of the approximation
into coarse (polynomial) and

fine (enrichment) scales.

Unlike PUM, VMS & RFB: enrichment field in DEM is not required to
vanish at element boundaries⇒ DEM is discontinuous by
construction!

DEM = DGM with Lagrange Multipliers

5 / 26



Advection-Diffusion Equation Discontinuous Enrichment Method (DEM) DEM for the 2D Advection-Diffusion Equation Numerical Experiments Summary

What about Inter-Element Continuity?

Continuity across element boundaries is enforced weakly using
Lagrange multipliers λh ∈ Wh:

λh ≈ ∇cE
e · ne = −∇cE

e′ · ne′ on Γe,e′

but making sure we uphold the...

Discrete Babuška-Brezzi inf-sup condition1:{
# Lagrange multiplier
constraint equations ≤ # enrichment

equations

}

Rule of thumb to satisfy the Babuška-Brezzi inf-sup condition is to limit:

nλ =

⌊
nE

4

⌋
≡ max

{
n ∈ Z|n ≤ nE

4

}
nλ = # Lagrange multipliers per edge
nE = # enrichment functions

1Necessary condition for generating a non-singular global discrete problem.
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Hybrid Variational Formulation of DEM

Strong form:

(S) :


Find c ∈ H1(Ω) such that
−κ∆c + a · ∇c = f , in Ω

c = g, on Γ = ∂Ω
ce − ce′

Weak hybrid variational form:

(W ) :


Find (c, λ) ∈ V ×W such that:

a(v , c) + b(λ, v) = r(v)

b(µ, c) = −rd (µ)

holds ∀c ∈ V, ∀µ ∈ W.

where

a(v , c) = (κ∇v + va,∇c)Ω̃

b(λ, v) =
∑

e

∑
e′<e

∫
Γe,e′ λ(ve′ − ve)dΓ +

∫
Γ
λv dΓ

Ω

Ωe
Γe

Notation:
Ω̃ = ∪nel

e=1Ωe

Γ̃ = ∪nel
e=1Γe

Γe,e′ = Γe ∩ Γe′

Γint = ∪e′<e ∪nel
e=1 {Γ

e ∩ Γe′}
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Discretization & Implementation
Element matrix problem (uncondensed): kPP kPE kPC

kEP kEE kEC

kCP kCE 0

 cP

cE

λh

 =

 rP

rE

rC



Due to the discontinuous nature of VE , cE can be
eliminated at the element level by a static condensation

Computational
complexity

depends on dimWh

not on dimVE

Statically-condensed True DEM Element:(
k̃PP k̃PC

k̃CP k̃CC

)(
cP

λh

)
=

(
r̃P

r̃C

)

Statically-condensed Pure DGM Element:

−kCE(kEE)−1kECλh = rC − kCE(kEE)−1rE
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Polynomial Enrichment Functions for 2D
Advection-Diffusion

Polynomial free-space solutions to a · ∇cE
n −∆cE

n = 0 (of any desired
degree n) can be derived2.

cE
1 (x) = |a× x|

cE
2 (x) = |a× x|2 + 2(a · x)

cE
3 (x) = |a× x|3 + 6|a× x|(a · x)

...

cE
1 (x) cE

2 (x) cE
3 (x)

Slowly-varying (coarse) scale shape functions

2The advantage of these polynomials over standard FEM polynomials is discussed
in: S. Brogniez, C. Farhat, “Theoretical Analysis of the DEM for the Advection-Diffusion
Equation at High Pe Number,” FEF 2011 (W2G, Wed. March 23, 14:10-14:30).
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Angle-Parametrized Exponential Enrichment
Functions for 2D Advection-Diffusion

Exponential free-space solutions to a · ∇cE − κ∆cE = 0 can be derived
as well.

cE (x; θi ) = e

(
a1+|a| cos θi

2κ

)
(x−xr,i )e

(
a2+|a| sin θi

2κ

)
(y−yr,i ) (1)

Θc ≡ {θi}nE

i=1 ∈ [0, 2π) = set of angles specifying VE

φ = 0, θi = 0 φ = 0, θi = π
2 φ = 0, θi = 3π

2

Figure 2: Plots of enrichment functions cE (x; θi ) for several values of θi (Pe = 20)

Rapidly-varying (fine) scale shape functions
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Lagrange Multiplier Approximations

�
�
�
�
�
�

@@R
ne,e′

s

q
q

s = 0

s = hΩe

Ωe′Γe,e′

αe,e′
�
�
�
��

��
Figure 3: Straight edge Γe,e′

oriented at angle αe,e′ ∈ [0, 2π)

λh ≈ ∇cE
e · ne = −∇cE

e′ · ne′

Limit nλ to satisfy inf-sup:

Use


⌊

nexp

4

⌋
exponential LMs⌊

npol

4

⌋
polynomial LMs

LM approximations arising from exponential enrichments:

λh|Γe,e′ = span
{

eΛ
e,e′
i (s−se,e′

r,i )
, 0 ≤ s ≤ h, 1 ≤ i ≤ nexp

}
where Λe,e′

i ≡ |a|2κ

[
cos(φ− αe,e′) + cos(θi − αe,e′)

]
.

LM approximations arising from polynomial enrichments:

λh|Γe,e′ = span
{

sk , 0 ≤ s ≤ h, 0 ≤ k ≤ npol − 1
}
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Representative Numerical Results for Constant-
Coefficient Homogeneous Problem

Galerkin

DGM

Impressive results for
constant-coefficient problems!
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Extension to Variable-Coefficient Problems
Define VE within each element as the free-space solutions to the
homogeneous PDE, with locally-frozen coefficients.

a(x) ≈ ae =constant inside each element Ωe as h→ 0:

{a(x) · ∇c − κ∆c = f (x) in Ω} ≈ ∪nel
e=1{a

e · ∇c − κ∆c = f (x) in Ωe}.

ae ≡
(
−yj − h

2
xj + h

2

)

Ωe

ae′ ≡
(
−yj − h

2
xj + 3h

2

)

Ωe′

xj xj + h xj + 2h

yj

yj + h

�6a(x) =
(
−y, x

)T

Enrichment in each element:

cE
e (x; θe

i ) = e
|ae|
2κ (cosφe+cos θe

i )(x−xe
r,i )e

|ae|
2κ (sinφe+sin θe

i )(y−ye
r,i ) ∈ VE

e
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Relation Between Local Enrichment and Governing
PDE

Given a(x) ∈ C1(Ωe), Taylor expand a(x) around an element’s midpoint
x̄e:

a(x) = a(x̄e) +∇a|x=x̄e · (x− x̄e) +O(x− x̄e)2 in Ωe

Operator governing the PDE inside the element Ωe takes the form

a(x) ·∇c − κ∆c = Lec+ f (c) in Ωe

where

Lec ≡ a(x̄e) · ∇c − κ∆c

f (c) ≡
[
∇a|x=x̄e · (x− x̄e) +O(x− x̄e)2] · ∇c

f (c) ≡
[
∇a|x=x̄e · (x− x̄e) +O(x− x̄e)2] · ∇c

“Residual” advection equation acts as source-like term⇒ suggests true
DEM elements are in general more appropriate than pure DGM
elements for variable-coefficient problems.

Can we build a better pure DGM
element for variable-coefficient problems?
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“Higher Order” Enrichment Function for
Variable-Coefficient Advection-Diffusion

Linearize a(x) to second order, instead of to first order:

a(x) ≈ a(x̄e) +∇a|x=x̄e · (x− x̄e) in Ωe

Enrich with free-space solutions to

[Ax + b] · ∇cE − κ∆cE = 0 (2)

where A ≡ ∇a|x=x̄e , b ≡ (a(x̄e)−∇a|x=x̄e x̄e).

Solutions to (2) are given by:

cE (x) =

∫ vi ·x

0
exp

{
σiw2

2
+ (vi · b)w

}
dw

σi = eigenvalue of ∇a|x=x̄e

vi = eigenvector of ∇a|x=x̄e
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“Enrichment Function Bank”

Polynomial Family
cE

e,0(x) = 1
cE

e,1(x) = |ae × x|
cE

e,2(x) = |ae × x|2 + 2(ae · x)

cE
e,3(x) = |ae × x|3 + 6|ae × x|(ae · x)

...

Exponential Family

cE
e (x; θi ) = e

(
ae

1+|ae| cos θi
2κ

)
(x−xr,i )e

(
ae

2+|ae| sin θi
2κ

)
(y−yr,i )

“Higher Order” Enrichment
cE (x) =

∫ vi ·x
0 exp

{
σi w

2

2 + (vi · b)w
}

dw

VE
e
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Element Nomenclature
Notation

DGM Element:
{

Q − (npol, nexp)− nλ

Q − (npol, nexp)∗ − nλ

DEM Element: Q − nexp − nλ+ ≡ [Q − nexp − nλ] ∪ [Q1]

′Q′: Quadrilateral
nexp/npol: Number of Exponential/Polynomial Enrichment Functions
nλ: Number of Lagrange Multipliers per Edge
Q1: Galerkin Bilinear Quadrilateral Element

Name nE Θc
e nλ

DGM elements

Q − (4, 5)− 2 9 φe +
{ 2mπ

5 : m = 0, ..., 4
}

2
Q − (4, 5)∗ − 2 10 φe +

{ 2mπ
5 : m = 0, ..., 4

}
2

Q − (4, 9)− 3 13 φe +
{ 2mπ

9 : m = 0, ..., 8
}

3
Q − (4, 9)∗ − 3 14 φe +

{ 2mπ
9 : m = 0, ..., 8

}
3

DEM elements

Q − 5− 1+ 5 φe +
{ 2mπ

5 : m = 0, ..., 4
}

1
Q − 9− 2+ 9 φe +

{ 2mπ
9 : m = 0, ..., 8

}
2

Q − 13− 3+ 13 φe +
{ 2mπ

13 : m = 0, ..., 12
}

3
Q − 17− 4+ 17 φe +

{ 2mπ
17 : m = 0, ..., 16

}
4
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Computational Complexities
Element Asymptotic Stencil width for (# dofs) × L2 convergence

# of dofs uniform n × n mesh (stencil width) rate (a posteriori)
Q1 nel 9 9nel 2
Q2 3nel 21 63nel 3

Q − (4, 5)− 2 4nel 14 56nel 3

Q − (4, 5)∗ − 2 4nel 14 56nel 3

Q − 5− 1+ 3nel 21 63nel 2− 3

Q3 5nel 33 165nel 4
Q − (4, 9)− 3 6nel 21 126nel 4

Q − (4, 9)∗ − 3 6nel 21 126nel 4

Q − 9− 2+ 5nel 33 165nel 3− 4

Q4 7nel 45 315nel 5

Q − 13− 3+ 7nel 45 315nel 4− 5

Q − 17− 4+ 9nel 57 513nel 4− 5

Figure 4: Q1 stencil Figure 5: Q − 4− 1 stencil
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Summary of Computational Properties

“COMPARABLES”

A priori in
computational cost:

• DGM with n LMs and Qn

• DEM with n LMs and Qn+1

A posteriori in
convergence rate:

• DGM with n LMs and Qn

• DEM with n LMs and Qn/Qn+1

Exponential enrichments⇒ integrations can be computed analytically.

When a constant, LcE = 0⇒ convert volume integrals to boundary
integrals:

a(vE , cE ) =
∫

Ω̃
(κ∇vE · ∇cE + a · ∇cE vE ) dΩ

=
∫

Γ̃
∇cE · nvE d Γ
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Inhomogeneous Rotating Advection Problem on an
L–Shaped Domain

-

6

Ω

c = 0

c = 0

c = 0

c = 0

c = 0

c = 0c = 0

aT =
(

1− y , x
)
1 x

1

y

0.5

0

Figure 6: L-shaped domain and
rotating velocity field (curved lines
indicate streamlines)

Homogeneous Dirichlet
boundary conditions are
prescribed on all six sides of
L–shaped domain Ω.
Source: f = 1.
aT (x) =

(
1− y , x

)
.

Outflow boundary layer along the
line y = 1.
Second boundary layer that
terminates in the vicinity of the
re-entrant corner
(x , y) = (0.5,0.5).
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Solutions Plots for Pe = 103 with ≈ 3000 dofs

Q1 Stabilized Q1 Q2

Q − 5 − 1+ Q − 9 − 2+

* “Stabilized Q1” is upwind stabilized bilinear finite element [5].
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Convergence Analysis & Results

Element
Rate # dofs

of to achieve
convergence 10−2 error

Q2 1.94 62, 721
Q − 5− 1+ 1.55 21, 834

Q3 2.67 33, 707
Q − 9− 2+ 2.37 7, 568

Q4 3.50 20, 796
Q − 13− 3+ 3.23 5, 935
Q − 17− 4+ 3.26 4, 802

* “Stabilized Q1” is upwind stabilized bilinear
finite element [5].

To achieve for this problem the relative error of 1% for Pe = 103:
Q − 5− 1+ requires 2.9 × fewer dofs than Q2 (same sparsity).

⇒ 3.6 × less CPU time.

Q − 9− 2+ requires 4.5 × fewer dofs than Q3 (same sparsity).

⇒ 9.2 × less CPU time.

Q − 13− 3+ requires 3.5 × fewer dofs than Q4 (same sparsity).

⇒ 11.4 × less CPU time.
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Lid-Driven Cavity Flow Problem

-

6

c = 0

1

c = 1

∂c
∂n = 0

10

y

x∂c
∂n = 0

Ω

Ω = (0,1)× (0,1), f = 0.
a(x) computed numerically by
solving the incompressible
Navier-Stokes equations for
lid-driven cavity flow problem
(stationary sides and bottom,
tangential movement of top).
Advection field reconstructed using
interpolation with bilinear shape
functions φe

i :

ae(ξ) =

# nodes of Ωe∑
i=1

ae
i φ

e
i (ξ)

c(x) represents temperature in
cavity.
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Convergence Analysis & Results (κ = 0.01, Pe ≈ 260)

Pure DGM elements without “higher
order” enrichment outperform Galerkin
comparables.

Further improvement in computation by
adding “higher order” enrichment.

Q2

Q − (4, 5) − 2
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Summary

Discontinuous Enrichment Method (DEM) =
efficient, competitive alternative to stabilized FEMs

for advection-diffusion in a high Péclet regime.

Parametrization of exponential basis enables systematic design of DEM
elements of arbitrary orders.

Augmentation of enrichment space with additional free-space solutions
can improve further the approximation.

For all test problems, enriched elements outperform their Galerkin and
stabilized Galerkin counterparts of comparable computational
complexity, sometimes by many orders of magnitude.

In a high Péclet regime, DGM and DEM solutions are almost completely
oscillation-free, in contrast with the Galerkin solutions.

Advection-diffusion work generalizable to more complex equations in
fluid mechanics (e.g., non-linear, unsteady, 3D).

Future work: DEM for incompressible Navier-Stokes.
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